Abstract
Introduction
Acute myeloid leukemia (AML), the most common acute leukemia in adults, is characterized by uncontrolled proliferation of immuature myeloid cells. Despite newly approved drugs, AML remains largely incurable due to the persistence of the leukemia stem cell (LSC) population which lie quiescent in the bone marrow niche. Immunotherapy has potential to eradicate LSCs, however, no unique LSC immunophenotype has been identified. Moreover, it is necessary to simultaneously target multiple antigens (Ags) to prevent immune escape and to overcome refractory disease. We present in vitro studies in support of a therapeutic platform capable of targeting multiple intracellular Ags which could meet this challenge. The adoptive transfer of activated T cells primed to engage diverse AML associated epitopes by ex vivo exposure to artificial Ag presenting cells (aAPC) has the potential to eliminate both primary leukemia blasts and LSCs.
Hypothesis
Ex vivo enrichment and expansion (E+E) of antigen-educated CD8+ T cells recognizing 5 peptides derived from 3 proteins, Cyclin A1, PRAME and WT1, can selectively identify, engage, and kill AML cell lines or patient-derived (PD) AML blasts in a HLA A*02:01 restricted manner in vitro.
Materials and Methods
T cells from the peripheral blood mononuclear cell fraction of a healthy HLA A*02:01 donor were enriched for antigen-educated CD8+/CD4 -T cells. These cells were cultured with nanoparticles decorated with the 5 peptides and a costimulatory protein, resulting in the activation and expansion of those T cells expressing the cognate T cell receptors. These cells are composed of ~97% abT cells, 3% gdT cells and ~13% T scm, 41.5% T cm, 39.5%T em, 6%T emra and 1% T n.
Results
Ex vivo expanded educated T cells exhibit target-specific anti-AML activity. T cell mediated cell apoptosis of HLA-matched THP1 cells is dose and time-dependent. At 10:1 effector to target (E:T) ratio, ~28% apoptosis occurred at 24 hrs, while apoptosis was at basal levels when antigen non-educated T cells were used (data not shown). Studies were extended to PD AML cells (Fig. 1A: 012; Fig. 1B: 415) where antigen educated T cells elicited rapid (<16 hrs) and extensive (~90%) apoptosis of target PD AML cells at all E:T ratios examined. Time lapse photography of T cell/PD AML incubations revealed antigen-educated T cells clustered around AML cells (Fig. 2A), a fraction of the latter disappearing over the course of 12 hrs while PD AML cells incubated with non-educated T cells (Fig. 2B) remained viable over 12 hrs. Furthermore, there is little or no T cell movement or clustering in the wells with unprimed, non-active T cells.
Release of IFN-γ by educated T cells. T cells (Fig.3A: antigen-educated through
E+E) were incubated at E:T::5:1 for 24 to 48 hrs and IFN-γ in supernatants measured. The fold difference over non-educated T cells incubated with AML cells for the same time is shown and can reach over 5-fold. IFN-γ accumulation was time-dependent where antigen-educated T cells were combined with HLA-A2 matched THP1 or PD AML cells (012, 415, 470). Educated T cells were not active against target cells lacking HLA-A2 (K562) demonstrating HLA restricted killing (Fig. 3B). Additionally, antigen-educated T cells incubated without any target released slightly more IFN-γ than non-educated T cells under similar conditions but AML cells fail to stimulate IFN-γ release from non-educated T cells (data not shown).
Conclusions
We demonstrate HLA restricted cytotoxic activity of antigen-educated T cells against THP1 AML cells and PD AML blasts as shown by flow cytometry and microscopy. Consistent with target cell death, the supernatants from assays with antigen-educated T cells and HLA A*02:01 AML target cells exhibited over 5-fold more IFN-γ than media from assays of non-educated cells under identical conditions. Under these in vitro conditions, PD AML blasts were more readily killed than THP1 cells perhaps due to higher target antigen density (data not shown). These results support the use of multi-antigen-educated T cells for adoptive transfer to treat AML. To investigate the safety and establish the recommended phase II dose, a multi-center Phase I clinical study is underway in relapsed AML post-allo-HCT (NCT 04284228). Future studies will incorporate new antigens to enable broader targeting of a heterogeneous population of AML within and across patients
Oelke: Neximmune, Inc: Current Employment. Kim: Neximmune, Inc: Current Employment. Marcucci: Agios: Other: Speaker and advisory scientific board meetings; Novartis: Other: Speaker and advisory scientific board meetings; Abbvie: Other: Speaker and advisory scientific board meetings. Al Malki: Jazz Pharmaceuticals, Inc.: Consultancy; Hansa Biopharma: Consultancy; Neximmune: Consultancy; CareDx: Consultancy; Rigel Pharma: Consultancy.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal